domingo, 16 de agosto de 2020


MATEMÁTICA GRACELI.

NÚMEROS SEQU]ENCIAIS DE GRACELI.

É TODO TIPO DE NÚMERO EM SEQUÊNCIA QUE É PRODUTO DE UM DIVISÃO.

COMO:
PI / 1.1. =
PI / 1.11 =
PI  / 1.111 =

1 / PROGRESSÃO DE TRES [3]. =

4 / 3 . =

E OUTROS



ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


Em física de partículas, o número bariônico, ou número bariónico, é um número quântico invariante ou nulo. Pode ser definido como um terço do número de quarks menos o número de antiquarks dentro do sistema:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde
 é o número de quarks, e
 é o número de antiquarks.




Os números quânticos descrevem valores de quantidades conservadas na dinâmica de um sistema quântico. No caso dos elétrons, os números quânticos podem ser definidos como "os conjuntos de valores numéricos que dão soluções aceitáveis para a equação de onda de Schrödinger para o átomo de hidrogênio",[1] e são de enorme relevância quando se trata de descrever a posição dos elétrons nos átomos.[2]


Introdução[editar | editar código-fonte]

Existem quatro números quânticos:
X
Estes quatro números quânticos, além de se complementarem, nos permitem fazer uma descrição completa dos elétrons nos átomos, pois eles dizem o nível principal de energia do elétron, o subnível de energia, a orientação espacial da nuvem eletrônica e a orientação do próprio elétron na nuvem. Cada combinação dos quatro números quânticos é única para um elétron.
Os primeiros três números quânticos são usados para descrever orbitais atômicos e a caracterização dos elétrons que neles se encontram. O quarto número quântico, número quântico de spin é utilizado na descrição do comportamento específico de cada elétron. Assim, qualquer par de elétrons pode ter até três números quânticos iguais sendo que, neste caso, necessariamente, o quarto número quântico deverá ser diferente, ou seja, este par de elétrons estará ocupando o mesmo orbital sendo que os elétrons apresentam spins opostos.

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Número quântico principal, n[editar | editar código-fonte]



número quântico principal pode tomar como valor qualquer número inteiro positivo. Como o próprio nome o sugere, este número quântico é o mais importante, pois o seu valor define a energia do átomo de hidrogênio (e de outro átomo monoelectrónico de carga nuclear Z) por meio da equação:
onde m e e são a massa dos nêutrons e a carga do elétronε0 é a permissividade do vácuo, e h é a constante de Planck. Esta equação foi obtida como resultado da equação de Schrodinger e é desigual a uma das equações obtidas por Bohr, utilizando os seus postulados correctos.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS









Na mecânica quântica, a paridade intrínseca é um fator de fase que surge como um autovalor de paridade de operação  (uma reflexão sobre a origem). Para ver de que a paridade do autovalores são fase de fatores, assumimos um estado puro da paridade de operação (isto é realizado porque o paridade intrínseca é uma propriedade de uma espécie da partícula) e usar o fato de que duas transformações de paridades deixam as partículas no mesmo estado, assim, a nova função de onda pode diferir apenas por um fator de fase, por exemplo:  assim, >
A fase de paridade intrínseca é conservada para as interações não-fracas (o produto das paridades intrínsecas é o mesmo antes e depois da reação). Como  o Hamiltoniano é invariante sob uma transformação de paridade. A intrínseca a paridade de um sistema é o produto da intrínseca paridades das partículas, por exemplo, para partículas não-interagentes, temos . Desde que a paridade comuta com o Hamiltoniano e  seu autovalor não se altera com o tempo, portanto, as  fases da paridades intrínsecas é uma quantidade conservada.
Uma consequência da equação de Dirac é que a paridade intrínseca de fermions e os antifermiones obedecem a relação  e , portanto, as partículas e suas antipartículas, o contrário de paridade. Únicos léptons jamais podem ser criados ou destruídos em experiências, como o número leptônico é uma quantidade conservada. Isso significa que os experimentos são incapazes de distinguir o sinal de uma paridade de léptons, de modo que, por convenção, é escolhido que léptons tem paridade intrínseca de +1, antileptons tem . Da mesma forma, a paridade dos quarks é escolhido ser o +1, e antiquarks é -1.[1]

 assim, >
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


, já que estas são apenas estados puros satisfazem a equação acima.




As partículas idênticas são partículas que não podem ser distinguidas entre si, inclusive em princípio. Tanto as partículas elementares como partículas compostas (como prótons ou átomos) são idênticas a outras partículas de sua mesma espécie.
Em física clássica, é possível distinguir partículas individuais em um sistema, inclusive se têm as mesmas propriedades mecânicas. Tanto se pode "etiquetar" ou "pintar" cada partícula para distinguí-la das demais, ou tanto se pode seguir com detalhe suas trajetórias. Entretanto, isto não é possível para partículas idênticas em mecânica quântica. As partículas quânticas estão especificadas exatamente por seus estados mecânico-quânticos, de forma que não é possível assinalar-se propriedades físicas ou "etiquetas" adicionais, além de um nível formal. Seguir a trajetória de cada partícula também é impossível, já que sua posição e seu momento não estão definidas com exatidão simultaneamente em nenhum momento (conforme o princípio da incerteza de Heisenberg).
Isso tem consequências importantes em mecânica estatística. Os cálculos em mecânica estatística baseiam-se em argumentos probabilísticos, que são sensíveis se os objetos estudados são idênticos ou não. Assim sendo, as partículas idênticas exibem um comportamento estatístico "massivo" marcadamente distinto daquele das partículas clássicas (distinguíveis).


Partículas idênticas e energia de intercâmbio[editar | editar código-fonte]

É possível elucidar estas afirmações com um pouco de detalhe técnico. A "identidade" das partículas está ligada à simetria dos estados mecanico-quânticos devido ao intercâmbio de etiquetas das partículas. Isto dá lugar a dois tipos de partículas, que se comportam de forma diferente, chamadas férmions e bósons. (Há também um terceiro tipo, anyons e sua generalização, pléktons).
Se considerarmos um sistema com duas partículas idênticas, pode-se supor que o vetor de estado de uma partícula é |ψ>, e o vetor de estado da outra partícula é |ψ′>. Pode-se representar o estado do sistema combinado, que é uma combinação não especificada dos estados de uma partícula, como:
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se as partículas são idênticas, então: (i) seus vetores de estados ocupam espaços de Hilbert matematicamente idênticos; e (ii) |ψψ′> e |ψ′ ψ> terão a mesma probabilidade de colapsar a qualquer outro estado multipartícula |φ>:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Esta propriedade se chama simetría de intercâmbio. Uma forma de satisfazer essa simetría é que a permutação só induza uma fase:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sem dúvida, duas permutações conduzirão à identidade (visto que as etiquetas voltarão a suas posições originais), donde se requer que e2iα = 1. Então, ou
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que se chama um estado totalmente simétrico, ou
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que se chama estado totalmente antisimétrico.




Piônio é um átomo exótico consistindo de um méson π+ e um π. Ele pode ser criado, por exemplo, pela interação de um feixe de prótons acelerados por um acelerador de partículas tendo como alvo um núcleo atômico.
O piônio tem um curto tempo de vida, previsto pela quiralidade, de 2.89 x 10-15 segundos. Ele decai principalmente para dois mésons π0 e em menor extensão em dois prótons. O piônio está atualmente sobre investigação na CERN para medir o seu tempo de vida. A colaboração DIRAC foi capaz de detectar 21 227 pares atômicos de um total de 1.5 X 109 eventos, o que faz com que a vida do piônio possa ser determinada com um erro estatístico de 9%.[1]
Em 2005, a NA48/2 colaboração na CERN publicou uma evidência da produção de piônio e decaimento em káons carregados, estudando o espectro de massa de pares de píons filhos em eventos com três píons no estado final:
.[2]
A possibilidade de medir as características do piônio está sendo investigada.[3] Os resultados dos experimentos acima vão providenciar testes cruciais de baixa energia para as previsões da cromodinâmica quântica.[4]


.[2]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS